ICCSZ訊 部署一張切實(shí)可行的5G網(wǎng)絡(luò),頻譜的選擇和可利用性是最重要的因素,沒(méi)有足夠的優(yōu)質(zhì)頻譜,5G技術(shù)再厲害也展示不出來(lái)。毫米波具有頻率高、波長(zhǎng)短、可靠性高、方向性好等特點(diǎn),在5G時(shí)代更高速率、更低能耗、更多連接的愿景下,毫米波將成為5G的重要組成部分,甚至成為全球競(jìng)爭(zhēng)的焦點(diǎn)。
由于毫米波技術(shù)具備足夠量的可用帶寬和較高的天線增益,其可以支持超高速的傳輸速率,且波束窄,靈活可控,可以連接大量設(shè)備。毫米波在5G時(shí)代的多種無(wú)線接入技術(shù)疊加型移動(dòng)通信網(wǎng)絡(luò)中可以有兩種應(yīng)用場(chǎng)景。
一是毫米波小基站,可增強(qiáng)高速環(huán)境下移動(dòng)通信的使用體驗(yàn),在傳統(tǒng)的多種無(wú)線接入技術(shù)疊加型網(wǎng)絡(luò)中,宏基站與小基站均工作于低頻段,這就帶來(lái)了頻繁切換的問(wèn)題,用戶體驗(yàn)差,為解決這一關(guān)鍵問(wèn)題,在未來(lái)的疊加型網(wǎng)絡(luò)中,宏基站工作于低頻段并作為移動(dòng)通信的控制平面,毫米波小基站工作于高頻段并作為移動(dòng)通信的用戶數(shù)據(jù)平面。
二是基于毫米波的移動(dòng)通信回程(基站回傳),在采用毫米波信道作為移動(dòng)通信的回程后,疊加型網(wǎng)絡(luò)的組網(wǎng)將具有很大的靈活性,在未來(lái)的5G時(shí)代,小/微基站的數(shù)目將非常龐大,而且部署方式也將非常復(fù)雜,可以隨時(shí)隨地根據(jù)數(shù)據(jù)流量增長(zhǎng)需求部署新的小基站或者微站,并可以在空閑時(shí)段或輕流量時(shí)段靈活、實(shí)時(shí)關(guān)閉某些小基站,從而可以收到節(jié)能降耗之效。到了5G時(shí)代,更多的物-物連接接入網(wǎng)絡(luò),異構(gòu)網(wǎng)絡(luò)(HetNet)的密度將會(huì)大大增加。
毫米波小站/微站研發(fā)情況
為了實(shí)現(xiàn)n×10Gbit/s的下行數(shù)據(jù)速率,在毫米波5G小站/微基站研發(fā)方面,業(yè)界對(duì)于毫米波關(guān)聯(lián)的Massive MIMO技術(shù)進(jìn)行了大量研究,涉及信號(hào)傳播、波形、多址接入與用戶調(diào)度、陣列天線、預(yù)編碼機(jī)制、信道建模、信道測(cè)量、信道預(yù)估和反饋、前傳/回傳等諸多關(guān)鍵領(lǐng)域,除了毫米波Massive MIMO,多功能、高寬帶、高集成度、低功耗5G毫米波專用芯片、器件的研發(fā)也取得快速進(jìn)展。
比如,在AD/DA方面,Xlinx研制的RF-SoCs把ADC、DAC和RF SOC集成,減少了尺寸,降低了功耗,未來(lái)適用于多功能、高寬帶、高集成度、低功耗的毫米波5G微基站;在中頻收發(fā)多功能芯片及射頻前端方面,高通、IBM等企業(yè)的技術(shù)處于領(lǐng)先地位;在5G毫米波關(guān)鍵器件——化合物半導(dǎo)體方面,高通、Qorvo、Globalfoundries等企業(yè)都在GaAs射頻器件領(lǐng)域占據(jù)一席之地。隨著5G毫米波頻段的加入,終端GaAs射頻器件用量將會(huì)進(jìn)一步提升,預(yù)計(jì)到2020年,全球GaAs器件市場(chǎng)將超過(guò)百億美元;在相當(dāng)長(zhǎng)的時(shí)間內(nèi),5G毫米波終端的前端芯片離不開(kāi)Si工藝,因?yàn)镾i基(含SiGe)前端芯片在成本、系統(tǒng)功耗上均具有一定優(yōu)勢(shì)。
與此同時(shí),運(yùn)營(yíng)商們也在抓緊進(jìn)行毫米波5G技術(shù)試驗(yàn)。2019年2月GSA發(fā)布的報(bào)告顯示,共有83個(gè)國(guó)家/地區(qū)的201家運(yùn)營(yíng)商在積極投資5G技術(shù)(包括技術(shù)測(cè)試、試驗(yàn)、展示、預(yù)商用);全球5G試驗(yàn)網(wǎng)中有多達(dá)57%使用了毫米波頻段,另外43%使用Sub-6GHz頻段。從運(yùn)營(yíng)商們發(fā)布的毫米波5G技術(shù)試驗(yàn)結(jié)果看來(lái),網(wǎng)絡(luò)吞吐、峰值速率、單用戶體驗(yàn)速率、時(shí)延等均能滿足ITU對(duì)于5G系統(tǒng)的關(guān)鍵性能指標(biāo)要求。
在進(jìn)行毫米波5G技術(shù)試驗(yàn)的過(guò)程中,運(yùn)營(yíng)商、設(shè)備商、芯片商、測(cè)試測(cè)量廠商等逐漸形成共識(shí):未來(lái)的5G網(wǎng)絡(luò)架構(gòu)必須異構(gòu)多層且能支持全頻段接入的低頻、中頻、毫米波頻段無(wú)線協(xié)作組網(wǎng)。毫米波單獨(dú)組網(wǎng)有著明顯的劣勢(shì),根據(jù)仿真和測(cè)試結(jié)果,單基站在28GHz頻段只能覆蓋150米左右,因此與Sub-6GHz頻段協(xié)作組網(wǎng)才是毫米波5G能進(jìn)行商用的一大前提。高通2018年在美國(guó)舊金山進(jìn)行了5G網(wǎng)絡(luò)模擬實(shí)驗(yàn),在現(xiàn)有的LTE基站(100%的4G覆蓋)基礎(chǔ)上輔以毫米波基站,實(shí)現(xiàn)了毫米波5G網(wǎng)絡(luò)65%的覆蓋率,并實(shí)現(xiàn)了5倍的網(wǎng)絡(luò)容量增益。該實(shí)驗(yàn)不但證明了協(xié)作組網(wǎng)的可行性,還表明協(xié)作組網(wǎng)后能達(dá)到更高能力。
上述這些進(jìn)展不斷加速毫米波5G商用進(jìn)程。這些進(jìn)展進(jìn)一步堅(jiān)定了業(yè)界對(duì)于“毫米波5G”的信心,并將最終確定把包含毫米波無(wú)線通信在內(nèi)的全頻譜接入技術(shù)列為5G核心技術(shù)之一。通過(guò)全頻譜接入,可以實(shí)現(xiàn)以Sub-6GHz頻段5G系統(tǒng)支持n×1Gbit/s高速通信,以毫米波頻段5G系統(tǒng)支持n×10Gbit/s超高速通信。
我國(guó)5G毫米波技術(shù)試驗(yàn)工作計(jì)劃
從目前毫米波頻段產(chǎn)業(yè)發(fā)展的情況來(lái)看,在設(shè)備及芯片方面,國(guó)內(nèi)已經(jīng)有高頻技術(shù)及制造能力,之前的北京懷柔外場(chǎng)測(cè)試也顯示出國(guó)內(nèi)廠商具備高頻技術(shù)能力并已提供相應(yīng)高頻樣機(jī),但距離規(guī)模商用還需進(jìn)行芯片產(chǎn)業(yè)鏈培育,比如發(fā)展低成本、高工藝的芯片。在測(cè)試儀器及儀表方面,目前階段還沒(méi)有可支持5G毫米波商用的測(cè)試儀表,需要盡快明確頻譜規(guī)劃,以促進(jìn)儀器儀表廠商投入開(kāi)發(fā)。未來(lái),IMT-2020(5G)推進(jìn)組還將繼續(xù)統(tǒng)籌規(guī)劃,分階段推進(jìn)5G毫米波試驗(yàn):2019年8—12月,驗(yàn)證5G毫米波關(guān)鍵技術(shù)和系統(tǒng)特性;2020年驗(yàn)證毫米波基站和終端的功能、性能和互操作,開(kāi)展高低頻協(xié)同組網(wǎng)驗(yàn)證;2020—2021年,開(kāi)展典型場(chǎng)景驗(yàn)證。
5G毫米波技術(shù)試驗(yàn)網(wǎng)絡(luò)環(huán)境采用MTNet實(shí)驗(yàn)室+懷柔外場(chǎng),構(gòu)成室內(nèi)外一體化網(wǎng)絡(luò),在前期3.5GHz測(cè)試環(huán)境中,增加毫米波測(cè)試環(huán)境,支撐毫米波關(guān)鍵技術(shù)測(cè)試。懷柔已完成毫米波站址的準(zhǔn)備,初步滿足毫米波外場(chǎng)測(cè)試需求;已研發(fā)構(gòu)建5G毫米波OTA射頻測(cè)試環(huán)境,具備5G基站、終端的OTA射頻測(cè)試能力;正在構(gòu)建基站和終端的OTA性能測(cè)試環(huán)境,可滿足2020年性能測(cè)試需求。
5G毫米波技術(shù)試驗(yàn)關(guān)鍵技術(shù)測(cè)試主要分為三方面,分別是室內(nèi)功能測(cè)試、外場(chǎng)性能測(cè)試和基站射頻OTA測(cè)試。在測(cè)試進(jìn)展方面,華為、諾基亞貝爾、中興完成了5G毫米波關(guān)鍵技術(shù)測(cè)試的功能、射頻和外場(chǎng)性能;海思、高通進(jìn)行了5G毫米波關(guān)鍵技術(shù)的室內(nèi)功能測(cè)試。
在毫米波基站功能測(cè)試方面,華為、中興在800MHz總帶寬,諾基亞貝爾、愛(ài)立信在400MHz總帶寬配置下進(jìn)行室內(nèi)關(guān)鍵技術(shù)測(cè)試;諾基亞貝爾、愛(ài)立信采用基于高通X50芯片與毫米波射頻模塊的CPE開(kāi)展測(cè)試。海思、高通芯片分別與華為、中興系統(tǒng)配合,開(kāi)展了毫米波室內(nèi)關(guān)鍵技術(shù)部分測(cè)試。5G毫米波基站工作在24.75~27.5GHz和26.5~27.5GHz。
我國(guó)5G毫米波試驗(yàn)的目標(biāo)和任務(wù),主要就是希望能夠通過(guò)測(cè)試工作來(lái)研究和驗(yàn)證5G毫米波關(guān)鍵技術(shù)和主要特性,來(lái)制定26~28GHz頻段的5G設(shè)備功能和性能的指標(biāo)要求,指導(dǎo)5G毫米波基站、核心器件和終端的研發(fā)。后續(xù)IMT-2020(5G)推進(jìn)組將繼續(xù)與國(guó)內(nèi)外產(chǎn)業(yè)界一起,共同推動(dòng)5G毫米波產(chǎn)業(yè)發(fā)展、組網(wǎng)研究和行業(yè)探索。
毫米波5G小站/微站使用下的超密集組網(wǎng)異構(gòu)網(wǎng)絡(luò)規(guī)劃方法
超密集組網(wǎng)(Ultra-Dense Network,UDN)是基于小微基站的技術(shù)研究,它是5G階段引起業(yè)界普遍關(guān)注的技術(shù)研究方向和網(wǎng)絡(luò)站點(diǎn)規(guī)劃重要方式。從中國(guó)移動(dòng)部署來(lái)看,在毫米波基站成熟商用之前,未來(lái)幾年建議逐漸采用4G/5G協(xié)同的方法進(jìn)行目標(biāo)網(wǎng)建網(wǎng),如圖1所示。
圖1 4G/5G協(xié)同組網(wǎng)規(guī)劃
超密度異構(gòu)組網(wǎng)技術(shù)是指為應(yīng)對(duì)未來(lái)持續(xù)增長(zhǎng)的數(shù)據(jù)業(yè)務(wù)需求,采用更加密集的小區(qū)進(jìn)行立體網(wǎng)絡(luò)覆蓋的部署技術(shù),它將成為5G提升網(wǎng)絡(luò)總體性能的一種方法。無(wú)線物理層技術(shù),如編碼技術(shù)、MAC、調(diào)制技術(shù)和多址技術(shù)等,只能提升約10倍的頻譜效率,即便采用更寬的帶寬也只能提升幾十倍的傳輸速率,遠(yuǎn)遠(yuǎn)不能滿足5G的需求,采用頻譜資源的空間復(fù)用帶來(lái)的頻譜效率提升的增益達(dá)到千倍以上,通過(guò)減小小區(qū)半徑,采用UDN網(wǎng)絡(luò)部署,增加單位面積內(nèi)小微基站的密度,通過(guò)在異構(gòu)網(wǎng)絡(luò)中引入超大規(guī)模低功率節(jié)點(diǎn)實(shí)現(xiàn)熱點(diǎn)增強(qiáng)、消除盲點(diǎn)、改善網(wǎng)絡(luò)覆蓋、提高系統(tǒng)容量,打破了傳統(tǒng)的扁平單層宏網(wǎng)絡(luò)覆蓋,使得多層立體異構(gòu)網(wǎng)絡(luò)應(yīng)運(yùn)而生,可顯著提高頻譜效率,改善網(wǎng)絡(luò)覆蓋,大幅度提升系統(tǒng)容量,通過(guò)增加小區(qū)數(shù)和信道數(shù),成倍提升容量,同時(shí)UDN具有更靈活的網(wǎng)絡(luò)部署和更高效的頻率復(fù)用能力。
UDN采用虛擬層技術(shù),宏基站小區(qū)作為虛擬層,虛擬宏小區(qū)承載控制信令,負(fù)責(zé)移動(dòng)性管理;實(shí)體微基站小區(qū)作為實(shí)體層,微小區(qū)承載數(shù)據(jù)傳輸。該技術(shù)可通過(guò)單載波或者多載波實(shí)現(xiàn)。單載波方案通過(guò)不同的信號(hào)或者信道構(gòu)建虛擬多層網(wǎng)絡(luò);多載波方案通過(guò)不同的載波構(gòu)建虛擬多層網(wǎng)絡(luò),將多個(gè)物理小區(qū)(或多個(gè)物理小區(qū)上的一部分資源)虛擬成一個(gè)邏輯小區(qū)。虛擬小區(qū)的資源構(gòu)成和設(shè)置可以根據(jù)用戶的移動(dòng)、業(yè)務(wù)需求等動(dòng)態(tài)配置和更改。虛擬層和以用戶為中心的虛擬小區(qū)可以解決超密集組網(wǎng)中的移動(dòng)性問(wèn)題。如圖2所示,在傳統(tǒng)的多種無(wú)線接入技術(shù)疊加型網(wǎng)絡(luò)中,宏基站與小基站均工作于低頻段,這就帶來(lái)了頻繁切換的問(wèn)題,用戶體驗(yàn)差。為解決這一關(guān)鍵問(wèn)題,在未來(lái)的疊加型網(wǎng)絡(luò)中,宏基站工作于低頻段并作為移動(dòng)通信的控制平面、毫米波小基站工作于高頻段并作為移動(dòng)通信的用戶數(shù)據(jù)平面。
圖2 疊加型網(wǎng)絡(luò)中毫米波小基站應(yīng)用類型
超密度異構(gòu)組網(wǎng)技術(shù)也增強(qiáng)了網(wǎng)絡(luò)的靈活性,可以針對(duì)用戶的臨時(shí)性需求和季節(jié)性需求快速部署新的小區(qū)。在未來(lái)的5G時(shí)代,小/微基站的數(shù)目將非常龐大,而且部署方式也將非常復(fù)雜,可以隨時(shí)隨地根據(jù)數(shù)據(jù)流量增長(zhǎng)需求部署新的小基站,并可以在空閑時(shí)段或輕流量時(shí)段靈活、實(shí)時(shí)關(guān)閉某些小基站,從而收到節(jié)能降耗之效。
在這一技術(shù)背景下,未來(lái)網(wǎng)絡(luò)架構(gòu)將形成“宏蜂窩+長(zhǎng)期微蜂窩+臨時(shí)微蜂窩”的網(wǎng)絡(luò)架構(gòu)(如圖3所示)。這一結(jié)構(gòu)將大大降低網(wǎng)絡(luò)性能對(duì)于網(wǎng)絡(luò)前期規(guī)劃的依賴,為5G時(shí)代實(shí)現(xiàn)更加靈活自適應(yīng)的網(wǎng)絡(luò)提供保障。
圖3 未來(lái)網(wǎng)絡(luò)架構(gòu)
到了5G時(shí)代,更多的物-物連接接入網(wǎng)絡(luò),立體組網(wǎng)的密度將會(huì)大大增加。與此同時(shí),小區(qū)密度的增加也會(huì)帶來(lái)網(wǎng)絡(luò)容量和無(wú)線資源利用率的大幅度提升。有仿真結(jié)果表明,當(dāng)宏小區(qū)用戶數(shù)為200時(shí),僅將微蜂窩的滲透率提高到20%,就可能帶來(lái)理論上1000倍的小區(qū)容量提升(如圖4所示)。同時(shí),這一性能的提升會(huì)隨著用戶數(shù)量的增加而更加明顯??紤]到5G主要的服務(wù)區(qū)域是城區(qū)等人員密度較大的區(qū)域,因此,超密度異構(gòu)組網(wǎng)技術(shù)將會(huì)給5G的發(fā)展帶來(lái)巨大潛力。
當(dāng)然,UDN所帶來(lái)的小區(qū)間干擾也將成為5G面臨的重要技術(shù)難題。目前,在這一領(lǐng)域的研究中,除了傳統(tǒng)的基于時(shí)域、頻域、功率域的干擾協(xié)調(diào)機(jī)制外,3GPP Rel-11提出了進(jìn)一步增強(qiáng)的小區(qū)干擾協(xié)調(diào)技術(shù)(eICIC),包括通用參考信號(hào)(CRS)抵消技術(shù)、網(wǎng)絡(luò)側(cè)的小區(qū)檢測(cè)和干擾消除技術(shù)等。這些eICIC技術(shù)均在不同的自由度上,通過(guò)調(diào)度使得相互干擾的信號(hào)互相正交,從而消除干擾。除此之外,還有一些新技術(shù)的引入也為干擾管理提供了新的手段,如認(rèn)知技術(shù)、干擾消除和干擾對(duì)齊技術(shù)等。隨著相關(guān)技術(shù)難題的陸續(xù)解決,在5G網(wǎng)絡(luò)中,UDN技術(shù)將得到更加廣泛的應(yīng)用。
圖4 UDN技術(shù)帶來(lái)的系統(tǒng)容量提升
5G時(shí)代超密集組網(wǎng)的典型應(yīng)用場(chǎng)景很多,包括機(jī)場(chǎng)、密集住宅、密集商業(yè)區(qū)和街區(qū)、校園、大型集會(huì)、體育場(chǎng)、地鐵等。但隨著5G使用頻段的升高,5G宏基站信號(hào)在穿透墻壁時(shí)相比4G衰減更大,室內(nèi)信號(hào)覆蓋難度凸顯。室外5G宏基站信號(hào)在穿透磚墻、玻璃和水泥等障礙物后只能提供淺層的室內(nèi)覆蓋,無(wú)法保證室內(nèi)深度覆蓋所需要的良好體驗(yàn),因此需要更多的小微基站。
由于毫米波基站數(shù)量眾多,安裝、管理復(fù)雜,故毫米波基站部署需從整體規(guī)劃。同時(shí),毫米波基站自身還需具備易于安裝部署和一定的故障自檢、自優(yōu)化的能力。毫米波基站的部署數(shù)量逐步增加后,運(yùn)營(yíng)商需要設(shè)置統(tǒng)一的網(wǎng)管進(jìn)行毫米波基站管理。
運(yùn)營(yíng)商在最初規(guī)劃的時(shí)候,需要在架構(gòu)上考慮毫米波基站演進(jìn)、部署的問(wèn)題,把宏基站和毫米波基站納入管理范圍,從架構(gòu)上考慮宏微協(xié)同組網(wǎng)。同時(shí),宏基站跟毫米波基站之間有比較密切的互操作,運(yùn)營(yíng)商需控制節(jié)點(diǎn),對(duì)宏基站、毫米波基站進(jìn)行協(xié)同。在室外場(chǎng)景的組網(wǎng)應(yīng)用中,宏微協(xié)同始終是組網(wǎng)的關(guān)鍵性能需求,尤其在5G時(shí)代,宏站覆蓋縮水的情況下需要大量的微站進(jìn)行網(wǎng)絡(luò)補(bǔ)充。而運(yùn)營(yíng)商對(duì)5G網(wǎng)絡(luò)性能的要求不會(huì)低于4G。因此與宏站協(xié)同將是5G室外毫米波基站必須關(guān)注的問(wèn)題。
從5G毫米波基站部署的節(jié)奏上來(lái)看,5G組網(wǎng)的順序一定也是先部署宏基站再部署毫米波基站,但兩者部署的間隔不會(huì)太長(zhǎng),無(wú)需像4G一樣在深度覆蓋階段再大規(guī)模部署,這也就意味著毫米波基站供應(yīng)商的產(chǎn)品一旦成熟,放量的步伐會(huì)更快。
5G向垂直行業(yè)的拓展也為毫米波基站提供了新的應(yīng)用場(chǎng)景,例如可以將毫米波基站與下沉核心網(wǎng)、邊緣計(jì)算等技術(shù)結(jié)合,形成易于靈活部署、更加個(gè)性化的端到端解決方案。
小結(jié)
部署一個(gè)切實(shí)可行的5G網(wǎng)絡(luò),頻譜的選擇和可利用性是最重要的因素,因?yàn)檫@將決定數(shù)據(jù)傳輸?shù)乃俣取⑷萘亢脱舆t。4G數(shù)據(jù)傳輸能力無(wú)法滿足當(dāng)前的需求,而5G的升級(jí)將通過(guò)部署使用毫米波、Sub-6GHz頻段或兩者混用的方式組網(wǎng)來(lái)解決速度和衰減的問(wèn)題。由于我國(guó)5G發(fā)展策略是先部署6GHz以下的中頻段,所以5G毫米波頻段的產(chǎn)業(yè)化速度沒(méi)有中頻段快。中國(guó)移動(dòng)對(duì)毫米波的商用設(shè)定于2022年。毫米波適用于有限、人口密集的地理區(qū)域,而Sub-6GHz則用于覆蓋廣泛地區(qū)。